Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
iScience ; 27(4): 109541, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38577108

RESUMO

As ectotherms, insects need heat-sensitive receptors to monitor environmental temperatures and facilitate thermoregulation. We show that TRPA5, a class of ankyrin transient receptor potential (TRP) channels absent in dipteran genomes, may function as insect heat receptors. In the triatomine bug Rhodnius prolixus (order: Hemiptera), a vector of Chagas disease, the channel RpTRPA5B displays a uniquely high thermosensitivity, with biophysical determinants including a large channel activation enthalpy change (72 kcal/mol), a high temperature coefficient (Q10 = 25), and in vitro temperature-induced currents from 53°C to 68°C (T0.5 = 58.6°C), similar to noxious TRPV receptors in mammals. Monomeric and tetrameric ion channel structure predictions show reliable parallels with fruit fly dTRPA1, with structural uniqueness in ankyrin repeat domains, the channel selectivity filter, and potential TRP functional modulator regions. Overall, the finding of a member of TRPA5 as a temperature-activated receptor illustrates the diversity of insect molecular heat detectors.

2.
ACS Photonics ; 11(3): 816-865, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38550347

RESUMO

Metasurfaces have recently risen to prominence in optical research, providing unique functionalities that can be used for imaging, beam forming, holography, polarimetry, and many more, while keeping device dimensions small. Despite the fact that a vast range of basic metasurface designs has already been thoroughly studied in the literature, the number of metasurface-related papers is still growing at a rapid pace, as metasurface research is now spreading to adjacent fields, including computational imaging, augmented and virtual reality, automotive, display, biosensing, nonlinear, quantum and topological optics, optical computing, and more. At the same time, the ability of metasurfaces to perform optical functions in much more compact optical systems has triggered strong and constantly growing interest from various industries that greatly benefit from the availability of miniaturized, highly functional, and efficient optical components that can be integrated in optoelectronic systems at low cost. This creates a truly unique opportunity for the field of metasurfaces to make both a scientific and an industrial impact. The goal of this Roadmap is to mark this "golden age" of metasurface research and define future directions to encourage scientists and engineers to drive research and development in the field of metasurfaces toward both scientific excellence and broad industrial adoption.

3.
Adv Mater ; : e2312087, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38419481

RESUMO

Lightweight, low-cost metasurfaces and reflectarrays that are easy to stow and deploy are desirable for many terrestrial and space-based communications and sensing applications. This work demonstrates a lightweight, flexible metasurface platform based on flat-knit textiles operating in the cm-wave spectral range. By using a colorwork knitting approach called float-jacquard knitting to directly integrate an array of resonant metallic antennas into a textile, we realize two textile reflectarray devices, a metasurface lens (metalens) and a vortex-beam generator. Operating as a receiving antenna, the metalens focuses a collimated normal-incidence beam to a diffraction-limited, off-broadside focal spot. Operating as a transmitting antenna, the metalens converts the divergent emission from a horn antenna into a collimated beam with peak measured directivity, gain, and efficiency of 21.30 dB, 15.30 dB, and -6.00 dB (25.12%), respectively. The vortex-beam generating metasurface produces a focused vortex beam with a topological charge of m = 1 over a wide frequency range of 4.1-5.8 GHz. Strong specular reflection is observed for our textile reflectarrays, caused by wavy yarn floats on the backside of the float-jacquard textiles. Our work demonstrates a novel approach for scalable production of flexible metasurfaces by leveraging commercially available yarns and well-established knitting machinery and techniques. This article is protected by copyright. All rights reserved.

4.
Nat Nanotechnol ; 18(6): 580-588, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37157023

RESUMO

Metasurfaces have been rapidly advancing our command over the many degrees of freedom of light; however, so far, they have been mostly limited to manipulating light in free space. Metasurfaces integrated on top of guided-wave photonic systems have been explored to control the scattering of light off-chip with enhanced functionalities-namely, the point-by-point manipulation of amplitude, phase or polarization. However, these efforts have so far been limited to controlling one or two optical degrees of freedom at best, as well as device configurations much more complex compared with conventional grating couplers. Here we introduce leaky-wave metasurfaces, which are based on symmetry-broken photonic crystal slabs that support quasi-bound states in the continuum. This platform has a compact form factor equivalent to the one of grating couplers, but it provides full command over the amplitude, phase and polarization (four optical degrees of freedom) across large apertures. We present devices for phase and amplitude control at a fixed polarization state, and devices controlling all the four optical degrees of freedom for operation at a wavelength of 1.55 µm. Merging the fields of guided and free-space optics through the hybrid nature of quasi-bound states in the continuum, our leaky-wave metasurfaces may find applications in imaging, communications, augmented reality, quantum optics, LIDAR and integrated photonic systems.


Assuntos
Óptica e Fotônica , Fótons
5.
J Exp Biol ; 226(7)2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36967715

RESUMO

The Australian lycaenid butterfly Jalmenus evagoras has iridescent wings that are sexually dimorphic, spectrally and in their degree of polarization, suggesting that these properties are likely to be important in mate recognition. We first describe the results of a field experiment showing that free-flying individuals of J. evagoras discriminate between visual stimuli that vary in polarization content in blue wavelengths but not in others. We then present detailed reflectance spectrophotometry measurements of the polarization content of male and female wings, showing that female wings exhibit blue-shifted reflectance, with a lower degree of polarization relative to male wings. Finally, we describe a novel method for measuring alignment of ommatidial arrays: by measuring variation of depolarized eyeshine intensity from patches of ommatidia as a function of eye rotation, we show that (a) individual rhabdoms contain mutually perpendicular microvilli; (b) many rhabdoms in the array have their microvilli misaligned with respect to neighboring rhabdoms by as much as 45 deg; and (c) the misaligned ommatidia are useful for robust polarization detection. By mapping the distribution of the ommatidial misalignments in eye patches of J. evagoras, we show that males and females exhibit differences in the extent to which ommatidia are aligned. Both the number of misaligned ommatidia suitable for robust polarization detection and the number of aligned ommatidia suitable for edge detection vary with respect to both sex and eye patch elevation. Thus, J. evagoras exhibits finely tuned ommatidial arrays suitable for perception of polarized signals, likely to match sex-specific life history differences in the utility of polarized signals.


Assuntos
Borboletas , Animais , Masculino , Feminino , Humanos , Austrália , Visão Ocular , Células Fotorreceptoras de Invertebrados
6.
Commun Biol ; 5(1): 1318, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36456867

RESUMO

We present an economical imaging system with integrated hardware and software to capture multispectral images of Lepidoptera with high efficiency. This method facilitates the comparison of colors and shapes among species at fine and broad taxonomic scales and may be adapted for other insect orders with greater three-dimensionality. Our system can image both the dorsal and ventral sides of pinned specimens. Together with our processing pipeline, the descriptive data can be used to systematically investigate multispectral colors and shapes based on full-wing reconstruction and a universally applicable ground plan that objectively quantifies wing patterns for species with different wing shapes (including tails) and venation systems. Basic morphological measurements, such as body length, thorax width, and antenna size are automatically generated. This system can increase exponentially the amount and quality of trait data extracted from museum specimens.


Assuntos
Museus , Registros , Fenótipo , Software
7.
Light Sci Appl ; 11(1): 246, 2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35922413

RESUMO

Photonic devices rarely provide both elaborate spatial control and sharp spectral control over an incoming wavefront. In optical metasurfaces, for example, the localized modes of individual meta-units govern the wavefront shape over a broad bandwidth, while nonlocal lattice modes extended over many unit cells support high quality-factor resonances. Here, we experimentally demonstrate nonlocal dielectric metasurfaces in the near-infrared that offer both spatial and spectral control of light, realizing metalenses focusing light exclusively over a narrowband resonance while leaving off-resonant frequencies unaffected. Our devices attain this functionality by supporting a quasi-bound state in the continuum encoded with a spatially varying geometric phase. We leverage this capability to experimentally realize a versatile platform for multispectral wavefront shaping where a stack of metasurfaces, each supporting multiple independently controlled quasi-bound states in the continuum, molds the optical wavefront distinctively at multiple wavelengths and yet stay transparent over the rest of the spectrum. Such a platform is scalable to the visible for applications in augmented reality and transparent displays.

8.
Nanomicro Lett ; 13(1): 96, 2021 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-34138312

RESUMO

HIGHLIGHTS: A zero-reflection-induced phase singularity is achieved through precisely controlling the resonance characteristics using two-dimensional nanomaterials. An atomically thin nano-layer having a high absorption coefficient is exploited to enhance the zero-reflection dip, which has led to the subsequent phase singularity and thus a giant lateral position shift. We have improved the detection limit of low molecular weight molecules by more than three orders of magnitude compared to current state-of-art nanomaterial-enhanced plasmonic sensors. Detection of small cancer biomarkers with low molecular weight and a low concentration range has always been challenging yet urgent in many clinical applications such as diagnosing early-stage cancer, monitoring treatment and detecting relapse. Here, a highly enhanced plasmonic biosensor that can overcome this challenge is developed using atomically thin two-dimensional phase change nanomaterial. By precisely engineering the configuration with atomically thin materials, the phase singularity has been successfully achieved with a significantly enhanced lateral position shift effect. Based on our knowledge, it is the first experimental demonstration of a lateral position signal change > 340 µm at a sensing interface from all optical techniques. With this enhanced plasmonic effect, the detection limit has been experimentally demonstrated to be 10-15 mol L-1 for TNF-α cancer marker, which has been found in various human diseases including inflammatory diseases and different kinds of cancer. The as-reported novel integration of atomically thin Ge2Sb2Te5 with plasmonic substrate, which results in a phase singularity and thus a giant lateral position shift, enables the detection of cancer markers with low molecular weight at femtomolar level. These results will definitely hold promising potential in biomedical application and clinical diagnostics.

9.
Phys Rev Lett ; 126(7): 073001, 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33666456

RESUMO

Quasi-bound states in the continuum (QBICs) are Fano resonant states with long optical lifetimes controlled by symmetry-breaking perturbations. While conventional Fano responses are limited to linear polarizations and do not support tailored phase control, here we introduce QBICs born of chiral perturbations that encode arbitrary elliptical polarization states and enable geometric phase engineering. We thereby design metasurfaces with ultrasharp spectral features that shape the impinging wave front with near-unity efficiency. Our findings extend Fano resonances beyond their conventional limits, opening opportunities for nanophotonics, classical and quantum optics, and acoustics.

10.
Nano Lett ; 21(3): 1412-1418, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33524258

RESUMO

Passive daytime radiative cooling (PDRC) has drawn significant attention recently for electricity-free cooling. Porous polymers are attractive for PDRC since they have excellent performance and scalability. A fundamental question remaining is how PDRC performance depends on pore properties (e.g., radius, porosity), which is critical to guiding future structure designs. In this work, optical simulations are carried out to answer this question, and effects of pore size, porosity, and thickness are studied. We find that mixed nanopores (e.g., radii of 100 and 200 nm) have a much higher solar reflectance R̅solar (0.951) than the single-sized pores (0.811) at a thickness of 300 µm. With an Al substrate underneath, R̅solar, thermal emittance ε̅LWIR, and net cooling power Pcool reach 0.980, 0.984, and 72 W/m2, respectively, under a semihumid atmospheric condition. These simulation results provide a guide for designing high-performance porous coating for PDRC applications.

11.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33547236

RESUMO

Color vision has evolved multiple times in both vertebrates and invertebrates and is largely determined by the number and variation in spectral sensitivities of distinct opsin subclasses. However, because of the difficulty of expressing long-wavelength (LW) invertebrate opsins in vitro, our understanding of the molecular basis of functional shifts in opsin spectral sensitivities has been biased toward research primarily in vertebrates. This has restricted our ability to address whether invertebrate Gq protein-coupled opsins function in a novel or convergent way compared to vertebrate Gt opsins. Here we develop a robust heterologous expression system to purify invertebrate rhodopsins, identify specific amino acid changes responsible for adaptive spectral tuning, and pinpoint how molecular variation in invertebrate opsins underlie wavelength sensitivity shifts that enhance visual perception. By combining functional and optophysiological approaches, we disentangle the relative contributions of lateral filtering pigments from red-shifted LW and blue short-wavelength opsins expressed in distinct photoreceptor cells of individual ommatidia. We use in situ hybridization to visualize six ommatidial classes in the compound eye of a lycaenid butterfly with a four-opsin visual system. We show experimentally that certain key tuning residues underlying green spectral shifts in blue opsin paralogs have evolved repeatedly among short-wavelength opsin lineages. Taken together, our results demonstrate the interplay between regulatory and adaptive evolution at multiple Gq opsin loci, as well as how coordinated spectral shifts in LW and blue opsins can act together to enhance insect spectral sensitivity at blue and red wavelengths for visual performance adaptation.


Assuntos
Borboletas/fisiologia , Visão de Cores/fisiologia , Evolução Molecular , Rodopsina/genética , Animais , Duplicação Gênica , Células HEK293 , Humanos , Células Fotorreceptoras de Invertebrados/metabolismo , Pigmentação/fisiologia , Característica Quantitativa Herdável , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Rodopsina/metabolismo , Opsinas de Bastonetes/genética , Asas de Animais/fisiologia
12.
Rep Prog Phys ; 83(12): 126101, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33290268

RESUMO

Metasurfaces are artificial two-dimensional (2D) planar surfaces that consist of subwavelength 'meta-atoms' (i.e. metallic or dielectric nanostructures). They are known for their capability to achieve better and more efficient light control in comparison to their traditional optical counterparts. Abrupt and sharp changes in the electromagnetic properties can be induced by the metasurfaces rather than the conventional gradual accumulation that requires greater propagation distances. Based on this feature, planar optical components like mirrors, lenses, waveplates, isolators and even holograms with ultrasmall thicknesses have been developed. Most of the current metasurface studies have focused on tailoring the linear optical effects for applications such as cloaking, lens imaging and 3D holography. Recently, the use of metasurfaces to enhance nonlinear optical effects has attracted significant attention from the research community. Benefiting from the resulting efficient nonlinear optical processes, the fabrication of integrated all-optical nano-devices with peculiar functionalities including broadband frequency conversions and ultrafast optical switching will become achievable. Plasmonic excitation is one of the most effective approaches to increase nonlinear optical responses due to its induced strong local electromagnetic field enhancement. For instance, continuous phase control on the effective nonlinear polarizability of plasmonic metasurfaces has been demonstrated through spin-rotation light coupling. The phase of the nonlinear polarization can be continuously tuned by spatially changing the meta-atoms' orientations during second and third harmonic generation processes, while the nonlinear metasurfaces also exhibit homogeneous linear properties. In addition, an ultrahigh second-order nonlinear susceptibility of up to 104 pm V-1 has recently been reported by coupling the plasmonic modes of patterned metallic arrays with intersubband transition of multi-quantum-well layered substrate. In order to develop ultra-planar nonlinear plasmonic metasurfaces, 2D materials such as graphene and transition metal dichalcogenides (TMDCs) have been extensively studied based on their unique nonlinear optical properties. The third-order nonlinear coefficient of graphene is five times that of gold substrate, while TMDC materials also exhibit a strong second-order magnetic susceptibility. In this review, we first focus on the main principles of planar nonlinear plasmonics based on metasurfaces and 2D nonlinear materials. The advantages and challenges of incorporating 2D nonlinear materials into metasurfaces are discussed, followed by their potential applications including orbital angular momentum manipulating and quantum optics.

13.
Nat Commun ; 11(1): 3567, 2020 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-32678086

RESUMO

Van-der Waals (vdW) atomically layered crystals can act as optical waveguides over a broad range of the electromagnetic spectrum ranging from Terahertz to visible. Unlike common Si-based waveguides, vdW semiconductors host strong excitonic resonances that may be controlled using non-thermal stimuli including electrostatic gating and photoexcitation. Here, we utilize waveguide modes to examine photo-induced changes of excitons in the prototypical vdW semiconductor, WSe2, prompted by femtosecond light pulses. Using time-resolved scanning near-field optical microscopy we visualize the electric field profiles of waveguide modes in real space and time and extract the temporal evolution of the optical constants following femtosecond photoexcitation. By monitoring the phase velocity of the waveguide modes, we detect incoherent A-exciton bleaching along with a coherent optical Stark shift in WSe2.

14.
Phys Rev Lett ; 125(1): 017402, 2020 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-32678662

RESUMO

Diffractive photonic devices manipulate light via local and nonlocal optical modes. Local devices, such as metasurfaces, can shape a wave front at multiple selected wavelengths, but inevitably modify light across the spectrum; nonlocal devices, such as grating filters, offer great frequency selectivity but limited spatial control. Here, we introduce a rational design paradigm using quasibound states in the continuum to realize multifunctional nonlocal devices: metasurfaces that produce narrow band spatially tailored wave fronts at multiple selected wavelengths and yet are otherwise transparent.

15.
Nanomaterials (Basel) ; 10(7)2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32629982

RESUMO

In this work, we have designed highly sensitive plasmonic metasensors based on atomically thin perovskite nanomaterials with a detection limit up to 10-10 refractive index units (RIU) for the target sample solutions. More importantly, we have improved phase singularity detection with the Goos-Hänchen (GH) effect. The GH shift is known to be closely related to optical phase signal changes; it is much more sensitive and sharp than the phase signal in the plasmonic condition, while the experimental measurement setup is much more compact than that of the commonly used interferometer scheme to exact the phase signals. Here, we have demonstrated that plasmonic sensitivity can reach a record-high value of 1.2862 × 109 µm/RIU with the optimum configurations for the plasmonic metasensors. The phase singularity-induced GH shift is more than three orders of magnitude larger than those achievable in other metamaterial schemes, including Ag/TiO2 hyperbolic multilayer metamaterials (HMMs), metal-insulator-metal (MIM) multilayer waveguides with plasmon-induced transparency (PIT), and metasurface devices with a large phase gradient. GH sensitivity has been improved by more than 106 times with the atomically thin perovskite metasurfaces (1.2862 × 109 µm/RIU) than those without (918.9167 µm/RIU). The atomically thin perovskite nanomaterials with high absorption rates enable precise tuning of the depth of the plasmonic resonance dip. As such, one can optimize the structure to reach near zero-reflection at the resonance angle and the associated sharp phase singularity, which leads to a strongly enhanced GH lateral shift at the sensor interface. By integrating the 2D perovskite nanolayer into a metasurface structure, a strong localized electric field enhancement can be realized and GH sensitivity was further improved to 1.5458 × 109 µm/RIU. We believe that this enhanced electric field together with the significantly improved GH shift would enable single molecular or even submolecular detection for hard-to-identify chemical and biological markers, including single nucleotide mismatch in the DNA sequence, toxic heavy metal ions, and tumor necrosis factor-α (TNFα).

16.
Sci Adv ; 6(17): eaaz5413, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32426464

RESUMO

Solar reflective and thermally emissive surfaces offer a sustainable way to cool objects under sunlight. However, white or silvery reflectance of these surfaces does not satisfy the need for color. Here, we present a paintable bilayer coating that simultaneously achieves color and radiative cooling. The bilayer comprises a thin, visible-absorptive layer atop a nonabsorptive, solar-scattering underlayer. The top layer absorbs appropriate visible wavelengths to show specific colors, while the underlayer maximizes the reflection of near-to-short wavelength infrared (NSWIR) light to reduce solar heating. Consequently, the bilayer attains higher NSWIR reflectance (by 0.1 to 0.51) compared with commercial paint monolayers of the same color and stays cooler by as much as 3.0° to 15.6°C under strong sunlight. High NSWIR reflectance of 0.89 is realized in the blue bilayer. The performances show that the bilayer paint design can achieve both color and efficient radiative cooling in a simple, inexpensive, and scalable manner.

17.
Nat Commun ; 11(1): 551, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31992708

RESUMO

The wings of Lepidoptera contain a matrix of living cells whose function requires appropriate temperatures. However, given their small thermal capacity, wings can overheat rapidly in the sun. Here we analyze butterfly wings across a wide range of simulated environmental conditions, and find that regions containing living cells are maintained at cooler temperatures. Diverse scale nanostructures and non-uniform cuticle thicknesses create a heterogeneous distribution of radiative cooling that selectively reduces the temperature of structures such as wing veins and androconial organs. These tissues are supplied by circulatory, neural and tracheal systems throughout the adult lifetime, indicating that the insect wing is a dynamic, living structure. Behavioral assays show that butterflies use wings to sense visible and infrared radiation, responding with specialized behaviors to prevent overheating of their wings. Our work highlights the physiological importance of wing temperature and how it is exquisitely regulated by structural and behavioral adaptations.


Assuntos
Adaptação Fisiológica/fisiologia , Comportamento Animal , Borboletas/fisiologia , Termotolerância/fisiologia , Asas de Animais/fisiologia , Animais , Metabolismo Energético/fisiologia , Hemolinfa/fisiologia , Raios Infravermelhos , Modelos Biológicos , Nanoestruturas , Energia Solar , Temperatura , Termodinâmica , Sensação Térmica , Asas de Animais/anatomia & histologia , Asas de Animais/citologia , Asas de Animais/efeitos da radiação
18.
Light Sci Appl ; 8: 92, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31666948

RESUMO

Metasurfaces are optically thin metamaterials that promise complete control of the wavefront of light but are primarily used to control only the phase of light. Here, we present an approach, simple in concept and in practice, that uses meta-atoms with a varying degree of form birefringence and rotation angles to create high-efficiency dielectric metasurfaces that control both the optical amplitude and phase at one or two frequencies. This opens up applications in computer-generated holography, allowing faithful reproduction of both the phase and amplitude of a target holographic scene without the iterative algorithms required in phase-only holography. We demonstrate all-dielectric metasurface holograms with independent and complete control of the amplitude and phase at up to two optical frequencies simultaneously to generate two- and three-dimensional holographic objects. We show that phase-amplitude metasurfaces enable a few features not attainable in phase-only holography; these include creating artifact-free two-dimensional holographic images, encoding phase and amplitude profiles separately at the object plane, encoding intensity profiles at the metasurface and object planes separately, and controlling the surface textures of three-dimensional holographic objects.

19.
Light Sci Appl ; 7: 85, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30416721

RESUMO

Metasurfaces offer a unique platform to precisely control optical wavefronts and enable the realization of flat lenses, or metalenses, which have the potential to substantially reduce the size and complexity of imaging systems and to realize new imaging modalities. However, it is a major challenge to create achromatic metalenses that produce a single focal length over a broad wavelength range because of the difficulty in simultaneously engineering phase profiles at distinct wavelengths on a single metasurface. For practical applications, there is a further challenge to create broadband achromatic metalenses that work in the transmission mode for incident light waves with any arbitrary polarization state. We developed a design methodology and created libraries of meta-units-building blocks of metasurfaces-with complex cross-sectional geometries to provide diverse phase dispersions (phase as a function of wavelength), which is crucial for creating broadband achromatic metalenses. We elucidated the fundamental limitations of achromatic metalens performance by deriving mathematical equations that govern the tradeoffs between phase dispersion and achievable lens parameters, including the lens diameter, numerical aperture (NA), and bandwidth of achromatic operation. We experimentally demonstrated several dielectric achromatic metalenses reaching the fundamental limitations. These metalenses work in the transmission mode with polarization-independent focusing efficiencies up to 50% and continuously provide a near-constant focal length over λ = 1200-1650 nm. These unprecedented properties represent a major advance compared to the state of the art and a major step toward practical implementations of metalenses.

20.
Light Sci Appl ; 7: 67, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30275947

RESUMO

Optical devices are highly attractive for biosensing as they can not only enable quantitative measurements of analytes but also provide information on molecular structures. Unfortunately, typical refractive index-based optical sensors do not have sufficient sensitivity to probe the binding of low-molecular-weight analytes. Non-optical devices such as field-effect transistors can be more sensitive but do not offer some of the significant features of optical devices, particularly molecular fingerprinting. We present optical conductivity-based mid-infrared (mid-IR) biosensors that allow for sensitive and quantitative measurements of low-molecular-weight analytes as well as the enhancement of spectral fingerprints. The sensors employ a hybrid metasurface consisting of monolayer graphene and metallic nano-antennas and combine individual advantages of plasmonic, electronic and spectroscopic approaches. First, the hybrid metasurface sensors can optically detect target molecule-induced carrier doping to graphene, allowing highly sensitive detection of low-molecular-weight analytes despite their small sizes. Second, the resonance shifts caused by changes in graphene optical conductivity is a well-defined function of graphene carrier density, thereby allowing for quantification of the binding of molecules. Third, the sensor performance is highly stable and consistent thanks to its insensitivity to graphene carrier mobility degradation. Finally, the sensors can also act as substrates for surface-enhanced infrared spectroscopy. We demonstrated the measurement of monolayers of sub-nanometer-sized molecules or particles and affinity binding-based quantitative detection of glucose down to 200 pM (36 pg/mL). We also demonstrated enhanced fingerprinting of minute quantities of glucose and polymer molecules.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA